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Abstract. The phase space of the classical non-periodic discrete nonlinear Schrödinger
equation contains both a chaotic region and a continuous family of periodic orbits. In a bid to
determine the extent to which this mixed behaviour manifests itself in the transition to quantum
mechanics, we study the nearest-neighbour level-spacing distribution of the corresponding
quantum energy levels. This is compared with the optimal Berry–Robnik and Brody distributions,
which continuously interpolate between regular and chaotic level spacing statistics.

1. Introduction

A number of recent papers [1–5] have described an interesting, generic model for coupled,
anharmonic oscillators: the discrete nonlinear Schrödinger equation (DNLSE). TheDNLSE [1]
may be obtained from the familiar nonlinear Schrödinger equation by replacing the
continuous oscillating field by a discrete lattice, leading to the approximation of the linear
dispersion in the former by a linear coupling between neighbouring sites. In theDNLSE,
the interplay between the coupling and the nonlinearity leads to a range of behaviour
intermediate between periodic exchange of energy between the sites when the field intensity
is low, and localization for strong fields. These extremes correspond, respectively, to linear
dispersive propagation and field localization in the continuum model.

Unlike the NLSE, the DNLSE is non-integrable when the lattice consists of more than
two sites, and the simplest such case, the three-element lattice [2–7], has been a subject
of intensive investigation in recent years. There are two standard configurations for the
three-elementDNLSE lattice: the periodic or triangular lattice in which all lattice sites are
mutually adjacent, and therefore coupled, and the non-periodic configuration where the
lattice sites are arranged as a three-element linear array. In this latter arrangement, the
boundary sites are mutually uncoupled. Dynamical chaos has been found in the analysis of
both cases [2–7].

The DNLSE has been found to have a wide range of application in many disparate
branches of physics. In nonlinear optics, it is used as a model for systems of linearly-
coupled, non-dispersive, single-mode Kerr fibres (nonlinear directional couplers) [6, 7] and
in quantum chemistry it describes bond vibrations in certain molecular crystals [8, 9] and
biological polymers [10]. Many properties of theDNLSE are known as a consequence of it
being a particular case of a more general model, the discrete self-trapping equation [11, 12],
which is not restricted to nearest-neighbour coupling.

Although motivated originally by a quantum problem, in early studies theDNLSE was
considered as a classical system. In recognition of its quantum mechanical origin, the
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DNLSE has more recently been given a fully quantum treatment [13]. Quantization of the
DNLSE has proven to be a relatively uncomplicated matter, owing to the ease in which the
standard canonical quantization procedure can be applied. Furthermore, the symmetries of
the quantumDNLSE Hamiltonian imply that the corresponding time-independent Schrödinger
equation can be converted into a sequence of finite matrix eigenproblems.

A number of studies of theQDNLSE [14, 15], including this one, have been motivated
by the current widespread interest in quantum non-integrability; in particular, quantum
manifestations of classical chaos [16, 17]. Recent years have seen considerable effort being
devoted to identifying universality in the nearest-neighbour level spacing distribution for the
energy levels of non-integrable Hamiltonians. The fact that the eigenvalue problem for the
QDNLSE Hamiltonian can be reduced to the diagonalization of finite matrices implies that
the accuracy with which energy levels can be determined is restricted only by numerical
round-off errors, allowing very small level spacings to be resolved.

The nearest-neighbour level-spacing distribution has been studied for the periodic
QDNLSE [14, 15]. In this paper, we carry out a similar analysis for the non-periodic case.
Prior to doing so, we briefly review the main features of the classical model. The non-
periodic three-elementDNLSE is a conservative system and has the Hamiltonian

H = γ (|a|4 + |b|4 + |c|4)+ β(a∗b + b∗a + c∗b + b∗c) (1.1)

where a, b and c are the complex amplitudes for the oscillators at sites 1, 2 and 3,
respectively. The part of the Hamiltonian which is proportional toγ is the nonlinear self-
interaction term while the remainder couples sites 1 and 3 to site 2. Hamilton’s equations
for the oscillator amplitudes, which for the sake of brevity we denote byaj , are readily
obtained using the prescriptioṅaj = −i(∂H/∂a∗

j ). We find

iȧ = 2γ |a|2a + βb (1.2)

iḃ = 2γ |b|2b + β(a + c) (1.3)

iċ = 2γ |c|2c + βb . (1.4)

We note that both the uncoupled (β = 0) and linear (γ = 0) limits are integrable and
indeed analytically soluble. In the former case, the separate field intensities are constants of
motion and the solutions are easily found to beai(t) = ai(0)e−2iγ |ai(0)|2t , corresponding to
self-phase modulation when the oscillators are electromagnetic field modes. On the other
hand, the linear limit can be solved with equal ease by performing a canonical transformation
to the normal modes of the system.

In addition to the Hamiltonian there exists a further conserved quantity, the total field
strengthN = |a|2+|b|2+|c|2. There are, however, no further constants of motion, implying
that the system is, in general, non-integrable.

Not all solutions to (1.2)–(1.4) correspond to chaotic trajectories. Symmetric solutions
(a = c) are fully integrable and analytical expressions for the centre-excite initial condition
(a(0) = c(0) = 0) have been obtained in terms of Jacobi elliptic functions [7]. These
solutions are periodic orbits and have been found to be unstable against antisymmetric
perturbations [3, 7].

Another property of this system which has attracted a great deal of attention [2, 3] is
the fact that in the linear (γ = 0) limit, the Hamiltonian is that of threeresonantcoupled
oscillators. It is well known [18] that resonant and nonresonant tori undergo very different
kinds of transformation upon the addition of a small perturbation to the Hamiltonian. While
the KAM theorem guarantees that irrational tori will only be slightly deformed by a minor
alteration of the unperturbed dynamics, resonant tori are, by contrast, completely destroyed.
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This fact has important consequences for the system described by the Hamiltonian (1.1)
since in the linear limit all tori are resonant.

The perturbed system can exhibit widespread dynamical chaos when the nonlinear
perturbation, which gives rise to a mutual interaction among the linear canonical variables,
contains terms which are resonant with the linearized system [19]. It has been observed
that under such circumstances, chaos can develop even when the perturbation is arbitrarily
small, owing to the fact that the linear degrees of freedom are resonantly coupled by the
nonlinearity. A full discussion of this property of theDNLSE is given in [3].

2. The quantum Hamiltonian

A convenient starting point for our discussion of the related quantum model is the
corresponding quantum Hamiltonian

Ĥ = γ (â†â†ââ + b̂†b̂†b̂b̂ + ĉ†ĉ†ĉĉ)+ β(â†b̂ + b̂†â + ĉ†b̂ + b̂†ĉ) (2.1)

where the pairs of operators (â†, â), (b̂†, b̂) and (̂c†, ĉ) are naturally interpreted as bosonic
creation and annihilation operators for the three oscillators. The following discussion is
based on the treatment of the simpler two-siteDNLSE lattice given in [20]. Throughout
this paper we shall take ¯h = 1. On quantization, the total field strength becomes the total
boson number operator̂N = â†â + b̂†b̂ + ĉ†ĉ which commutes withĤ and thus remains a
conserved quantity. As a consequence of the symmetry between modes 1 and 3, the parity
operatorP̂ whose three-mode number state decomposition is

P̂ = 1
2

∞∑
j,k,l=0

(|j, k, l〉〈l, k, j | + |l, k, j〉〈j, k, l|) (2.2)

also commutes with the Hamiltonian. The Heisenberg equations of motion are readily
obtained:

i ˙̂a = 2γ â†ââ + βb̂ (2.3)

i ˙̂b = 2γ b̂†b̂b̂ + β(â + ĉ) (2.4)

i ˙̂c = 2γ ĉ†ĉĉ + βb̂ . (2.5)

In spite of the formal similarity between these equations and Hamilton’s equations (1.2)–
(1.4) for the classical system, operator ordering difficulties mean that an analytical solution
for the quantum centre-excite initial condition cannot be found in a manner analogous to
that by which the corresponding classical solution may be obtained.

Although the canonical quantization procedure does not lead to a unique prescription
for ordering products of noncommuting operators, everything which will be of interest to
us is insensitive to the ordering convention used in the nonlinear part of the Hamiltonian if
the same convention is used for all three oscillators. If we consider two distinct quantum
Hamiltonians arrived at by quantizing (1.1) according to different ordering prescriptions,
they will differ at most by a linear function of the total number operatorN̂ , and will therefore
mutually commute.

The quantum problem can be solved by numerically diagonalizing the Hamiltonian. A
method for doing this is suggested by the fact that total number operatorN̂ commutes with
the Hamiltonian given by equation (2.1). As a consequence, the total number of quanta
in the system is a conserved quantity. One can readily verify that the Hamiltonian matrix
element between two states with differing total particle number is zero

〈j ′, k′, l′|Ĥ |j, k, l〉 = δ(j ′+k′+l′)(j+k+l)H
j ′k′
Njk (2.6)
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whereN = j + k + l and the matrix elementHj ′k′
Njk is given by

H
j ′k′
Njk = 〈j ′, N − (j ′ + k′), k′|Ĥ |j,N − (j + k), k〉 (2.7)

having the explicit form

H
j ′k′
Njk = γ (2(j2 + k2)+N2 + 2jk + 2N(j + k)−N)δjj ′δkk′

+β(δkk′(
√
(j + 1)(N − j − k)δj ′j+1 +

√
j (N − j − k + 1)δj ′j−1)

+δjj ′(
√
(k + 1)(N − j − k)δk′k+1 +

√
k(N − j − k + 1)δk′k−1)) . (2.8)

The fact that the commutator [N̂, Ĥ ] is zero implies thatĤ andN̂ have a complete set
of common eigenstates. Each eigenstate ofĤ is then a linear combination of all eigenstates
of N̂ corresponding to a fixed degenerate eigenvalue. Themth such eigenstate of̂H with
N quanta has the number state expansion

|ψNm〉 =
N∑
j=0

N−j∑
k=0

R
jk

Nm|j,N − (j + k), k〉 (2.9)

where it is easily found thatm ranges from 0 toN(N + 3)/2, since the dimension of the
subspace spanned by all three-mode number states withN quanta is equal to 1+N(N+3)/2.
All eigenstates ofĤ are orthonormal,

N∑
j=0

N−j∑
k=0

R
jk

NmR
jk

Nm′ = δmm′ (2.10)

and have definite parity; that is, they are also eigenstates of the parity operatorP̂ given
by (2.2), meaning thatRjkNm = ±RkjNm where the plus and minus signs denote positive and
negative parity respectively. In order to determine the coefficientsR

jk

Nm, we must solve the
eigenvalue equation

Ĥ |ψNm〉 = ENm|ψNm〉 . (2.11)

Making use of (2.6), (2.7), (2.9) and (2.10), we find that in the three-mode number state
basis, the Schrödinger equation (2.11) reads

N∑
j=0

N−j∑
k=0

H
j ′k′
NjkR

jk

Nm = ENmR
j ′k′
Nm . (2.12)

All that remains to be done is to express (2.12) as an equivalentmatrix eigenvalue
problem. That is, for eachN , we must rearrange the elements ofH

j ′k′
Njk andRjkNm into square

matrices, so as to render the problem suitable for numerical diagonalization. We find that
a standard matrix eigenvalue problem is obtained by making the following transformations
of the indicesj, k, j ′ andk′:

b = j (N − (j − 3)/2)+ k 0 > j > N 0 > k > N − j (2.13)

b′ = j ′(N − (j ′ − 3)/2)+ k′ 0 > j ′ > N 0 > k′ > N − j ′ . (2.14)

Although each of these transformations maps a pair of indices onto a single index, they are
both invertible. Under this pair of mappings,Hj ′k′

Njk becomes a square matrixhb
′
Nb and the

number state expansion of themth eigenvectorRjkNm becomesrbNm. The matrix eigenproblem
is then

M(N)∑
b=0

hb
′
Nbr

b
Nm = ENmr

b′
Nm (2.15)
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whereM(N) is equal toN(N + 3)/2. We note that, as a consequence ofH
j ′k′
Njk being real

and invariant under the transformation (j, k, j ′, k′) → (j ′, k′, j, k), the matrixhb
′
Nb is real,

symmetric and hence Hermitian. It follows from (2.10) thatrb
′
Nm is a real, orthogonal matrix

for eachN .
The eigenvalues forN = 8 andN = 10 are shown in figures 1(a) and (b) respectively.

In both figures, we have taken the coupling constantβ to be 10 andγ has been allowed to
vary continuously from 0 to 10. Whenγ = 0, the energy levels form a degenerate regular
ladder of levels with minimum spacing

√
2β. Both this degeneracy and the otherwise regular

spacing can be readily accounted for since, in this limit, the system is simply three linearly
coupled oscillators, the eigenvalues and eigenstates of which can be calculated analytically.
Whenγ = 0, the Hamiltonian

Ĥ ′ = Ĥγ=0 = β(â†b̂ + b̂†â + ĉ†b̂ + b̂†ĉ) (2.16)

can be diagonalized by making a canonical transformation to the normal modes of the
system, which are characterized by the operatorsÂ± = (â±√

2b̂+ĉ)/2 andB̂ = (â−ĉ)/√2.
The only non-vanishing commutators among these three operators and their adjoints are

[Â+, Â
†
+] = [Â−, Â

†
−] = [B̂, B̂†] = 1 . (2.17)

The linear Hamiltonian may then be written as

Ĥ ′ = √
2β(Â†

+Â+ − Â
†
−Â−) (2.18)

and all simultaneous eigenstates ofĤ ′ andN̂ with eigenvalueN have the form

|φNjk〉 = ξNjkÂ
†j
+ Â

†k
− B̂

†N−(j+k)|0, 0, 0〉 (2.19)

where 0> j + k > N and the normalization constantξNjk is given by

ξNjk = (j !k!(N − j − k)!)−1/2 . (2.20)

The operatorŝA+ andÂ†
− will transform an eigenstate of̂H ′ with energyE into another

with energyE − √
2β, while Â− and Â†

+ act on a state with energyE to produce another
with energyE + √

2β. Although the remaining mode operatorsB̂ and B̂† also change
eigenstates ofĤ ′ into new ones, they do not alter the corresponding energy. We find that
the energyE′

Njk of the state|φNjk〉 is
√

2β(j − k) and these eigenvalues are, in general,
highly degenerate, even when we consider the fixed-N spectrum. In fact, defining

µNjk = N − E′
Njk/

√
2β (2.21)

we find that, when greater than zero, the quantities (µNjk+2)/2 and (µNjk+1)/2 are equal
to the fixed-N degeneracy of the energyE′

Njk whenµNjk is even and odd, respectively.
When the appropriate degeneracy formula has a value less than 1, there is noN -boson state
with energyE′

Njk.
The parity of the eigenstates in the linear limit is easily determined using the fact that the

parity operatorP̂ commutes with the symmetric creation operatorsÂ
†
± and anticommutes

with the antisymmetric operator̂B†. It follows from these relations that the parity of the
state|φNjk〉 is

〈φNjk|P̂ |φNjk〉 = (−1)N−j−k . (2.22)

One important consequence of (2.22) is the fact that symmetric and antisymmetric
eigenstates ofĤ ′ cannot correspond to the same degenerate eigenvalue. We can show this
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Figure 1. Energy eigenvalues forβ = 1 with (a) N = 8 and (b) N = 10.

by noting that if two states,|φNjk〉 and|φNj ′k′ 〉, have the same energy, thenj − k = j ′ − k′,
or

j + k = j ′ + k′ + 2(k − k′) . (2.23)

Since 2(k − k′) is even, the parity of the state|φNjk〉 as obtained from (2.22) is equal to
that of |φNj ′k′ 〉. That is, in the fixed-N spectrum, a degeneracy can only occur when the
corresponding eigenstates have the same parity. The full significance of this result will be
made clear when we come to study the nearest-neighbour level-spacing distribution in the
following section.

Our numerical results indicate that these degeneracies are completely broken by the
nonlinear perturbation for arbitrarily lowγ , and in the vicinity of integrability adjacent
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levels are seen to repel one another. Asγ is increased, the system departs further from
integrability and the spectra acquire the irregular character and high density of avoided level
crossings commonly observed in the spectra of non-integrable Hamiltonians. The density of
avoided crossings is seen to decrease for still larger values ofγ as the spectra respond to the
degeneracy in the nonlinear limit, at which all modes become decoupled and the system is
integrable once more. Asγ /β → ∞, the eigenvalues of̂H tend toE = γ (i2+j2+k2−N),
whereN = i + j + k, which are found to be sixfold degenerate when thei, j and k are
all different, threefold degenerate when two of them are equal and non-degenerate when
all three are equal [14]. In this uncoupled limit, the fixed-N spectrum, clearly a quadratic
function of the number of quanta in each mode, has a linear increase in level spacing. This
results in the grouping of neighbouring levels and repulsion of neighbouring groups.

3. Level-spacing distribution

In both integrable limits, the spectrum of theQDNLSE Hamiltonian exhibits a high degree of
degeneracy, as is typical of systems whose classical counterparts undergo regular motion.
Systematic degeneracies in spectra reflect symmetries in the Hamiltonian, which in turn
imply the existence of further conserved quantities. All degeneracies, except those due to
the conservation of the total number operatorN̂ , are eliminated on the transition to the
non-integrable regime, and numerous avoided crossings are observed instead. This is a
generic feature of the spectra of quantum systems whose classical counterparts are chaotic,
and it has led to the idea that universal signatures of non-integrability may be seen in the
nearest-neighbour level-spacing distribution (NNLSD) for the energy eigenvalues,P(S).

For typical non-integrable Hamiltonians,P(S) bears a strong resemblance to that of
random matrices with the same symmetry properties. While the full extent of the similarity
between non-integrable Hamiltonians and random matrices remains unelucidated, the fact
that a random Hamiltonian will not possess symmetries sufficiently powerful to cause
significant degeneracies gives the analogy considerable intuitive appeal.

The most fundamental result of Hermitian random matrix theory is the fact that if
the elements of an Hermitian random matrix are uncorrelated and have basis-invariant
probability distributions, then the matrix belongs to one of three Gaussian universality
classes [21]; that is, the individual elements have Gaussian probability distributions. The
universality class appropriate to theQDNLSE problem, that of real, symmetric matrices, is
the Gaussian orthogonal ensemble (GOE). As is well documented [16–18, 21], Wigner’s
approximationPW(S) to theNNLSD for the members of theGOE is

PW(S) = (πS/2) exp(−πS2/4) . (3.1)

This result is exact for 2×2 matrices and also holds good forM×M matrices asM → ∞.
At the other extreme, and with a few notable exceptions such as multidimensional resonant
oscillators, theNNLSD for integrable systems typically resembles a Poisson process [22]

PI (S) = exp(−S) (3.2)

exhibiting the widespread degeneracy expected for integrable systems (PI (0) = 1) in
contrast with the absence of degeneracies in the Wigner limit (PW(0) = 0), corresponding
to global chaos.

It is generally conceded that systems exhibiting global chaos are, like completely
integrable systems, exceptional. In the generic situation for Hamiltonian systems, regular
and chaotic trajectories coexist. As we have already noted, the classical non-periodicDNLSE

has an explicit and indeed continuous family of periodic orbit solutions for all parameter
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values. We should not therefore expect the correspondingNNLSD to be well approximated
by Wigner’s surmise. Two common choices for theNNLSD in the transition region are the
Brody distribution [23]

PB(q, S) = α(q + 1)Sq exp(−αSq+1) (3.3)

whereα = [0((q + 2)/(q + 1))]q+1 and the Berry–Robnik distribution [24]

PBR(ρ, S) = (1 − ρ)2 exp(−(1 − ρ)S) erfc(π1/2ρS/2)

+(2ρ(1 − ρ)+ πρ3S/2) exp(−(1 − ρ)S − πρ2S2/4) (3.4)

where erfc denotes the standard complementary error function. In the Berry–Robnik
distribution, the parameterρ is the fraction of the classical phase space filled with chaotic
trajectories. The parameterq in the Brody distribution does not admit a similar physical
interpretation. It is easily seen that whenρ andq take the values of 0 and 1, the Poisson
and Wigner distributions are respectively reproduced. Prior to comparing these distributions
with P(S), the exactNNLSD for the non-periodic discrete nonlinear Schrödinger equation,
a few comments are in order regarding howP(S) is constructed.

When formingP(S) for systems, such as the one considered here, which have another
constant of motion besides the Hamiltonian, care should taken to ensure that only spacings
between correlated levels are included in theNNLSD. It is often the case that levels belonging
to different symmetry classes, as defined by the additional constant, are uncorrelated,
permitting the occurrence of level crossings. We therefore consider only spacings between
levels corresponding to the same quantum numberN .

Although there is, in addition toĤ and N̂ , a further constant of motion, the parity
operatorP̂ given by (2.2), this does not give rise to additional degeneracies except in the
nonlinear limit. The reader will recall that we demonstrated this for the linear limit in
the previous section. As a consequence, when formingP(S) it is necessary to include all
spacings between adjacent levels belonging to the same symmetry class defined byN̂ , and
not just those corresponding to either symmetric or antisymmetric states, as must be done
for the periodic configuration [14]. We discuss this point more fully in the appendix.

It is also necessary to eliminate system-specific global trends in the spectrum by
unfolding it to unit mean density on a scale much larger than that of microscopic level
fluctuations. The spacing distribution for a given quantum numberN was calculated from
the levelseNi = f (ENi) wheref is the numerical staircase function of the smoothed density
of states [17].

For various values of the physical parameters,γ andβ, we have determined the values of
p andq for which the test distributionsPBR(ρ, S) andPB(q, S) give the best approximation
to the exact distributionP(S). The best-fit criterion is as follows. For the Berry–Robnik
distribution, we construct the function

1BR(ρ) =
∫

dS |PBR(ρ, S)− P(S)| (3.5)

and1B(q) is defined analogously for the Brody distribution. The optimum values of the
parameters inPBR(ρ, S), andPB(q, S), which we denote bȳρ and q̄, are taken to be those
for which1BR(ρ) and1B(q) are minimized.

Our results are shown in table 1 forβ = 1 andN = 40, which gives 860 spacings. For
this choice of parameters, we have found thatP(S) bears the strongest resemblance to both
distributions (3.3) and (3.4) whenγ lies between 0.001 and 0.01.

Figures 2(a) and (b) show P(S) compared with the corresponding optimal Berry–
Robnik and Brody distributions withγ = 0.008 andγ = 0.01 respectively. In these
figures, we see that the Berry–Robnik distribution bears a closer resemblance toP(S) than
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Table 1. Parameters for the optimal Berry–Robnik and Brody distributions as functions of the
nonlinear coefficientγ .

γ ρ̄ q̄ 1BR(ρ̄) 1B(q̄)

0.001 0.000 0.000 0.937 1.424
0.002 0.000 0.000 0.727 0.935
0.003 0.984 0.463 0.671 0.600
0.004 0.995 1.000 0.490 0.490
0.005 0.960 0.992 0.398 0.405
0.006 0.885 0.835 0.331 0.357
0.007 0.805 0.559 0.361 0.388
0.008 0.789 0.604 0.347 0.377
0.009 0.749 0.409 0.339 0.368
0.01 0.721 0.393 0.358 0.374

the Brody distribution. Indeed, in all results reported in the table, with the exception of
those given forγ = 0.002, PBR(ρ̄, S) is closer to the exact distribution thanPB(q̄, S). A
possible explanation for this is suggested by the behaviour of the energy eigenvalues shown
in figures 1(a) and (b) as γ increases. With the exception of eigenvalues corresponding
to states of the form|n, n, n〉, all levels tend to converge with one or more neighbours as
γ /β is increased, eventually leading to widespread degeneracy asγ /β → ∞. However,
not all level spacings decrease with equal rapidity. Asγ /β is increased, the speed at
which neighbouring levels converge is seen to grow with energy, and avoided crossings
become restricted to lower energies on approach to the nonlinear limit. Furthermore, in
the numerically obtainedNNLSD, there is an inevitable blurring of the distinction between
true degeneracies and minute level spacings which cannot be resolved due to the finite bin
size. We also note that these spacings are no greater than the typical separation between
a pair of levels at an avoided crossing, and so will not be significantly altered by the
numerical unfolding procedure. Consequently, the numerically computedP(S) exhibits a
gradual increase in the number of degeneracies asγ /β is increased, which also occurs in
the Berry–Robnik distribution asρ is decreased but which cannot be accounted for by the
Brody distribution, sincePB(q, 0) is strictly zero for all positive, non-zeroq.

4. Discussion

For some parameter choices, the nearest-neighbour level-spacing distribution for the
quantum discrete nonlinear Schrödinger equation shows reasonably good agreement with the
Brody and Berry–Robnik distributions. It is noteworthy that the latter generally provides
a better approximation. We regard this to be partly a consequence of the inappropriate
behaviour of the Brody distribution in the vicinity ofS = 0. The value of the Berry–
Robnik distribution at the origin varies continuously from one to zero between the Poisson
and Wigner limits. With a suitable choice of the parameterρ, it can resemble the numerically
computed distributionsP(S) at S = 0 for reasons we outlined in the previous section. On
the other hand, the Brody distribution vanishes at the origin and, moreover, its derivative
with respect toS diverges asq goes to zero.

Curiously, this latter feature does give rise to some degree of similarity between the
Brody distribution for smallq andP(S) prior to unfolding in the vicinity of the integrable
linear limit. Figures 1(a) and (b) show that asγ increases from zero, all degeneracies in the
linear limit are broken. AsN → ∞ this implies the instantaneous breaking of an infinite
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Figure 2. Nearest-neighbour level-spacing distribution (full curve) compared with the optimal
Brody (dotted) and Berry–Robnik (broken) distributions, forN = 40, β = 1 with (a) γ = 0.008
and (b) γ = 0.01.

number of degeneracies. This will cause the nearest-neighbour spacing distribution, which
in the linear limit is a pair of delta functions, with one at the origin, to broaden slightly.
Furthermore, the peak at the origin is displaced to the right so as to giveP(0) = 0. Both
the broadening and this slight shift go to zero as the linear limit is approached, implying
that the derivative ofP(S) with respect toS will become divergent asγ → 0.

In spite of this partial similarity betweenP(S) for minute nonlinear perturbations
and the Brody distribution for infinitesimalq, the overall forms of both functions are
completely different. This is essentially due to the fact that for smallγ, P (S) still
bears a strong qualitative resemblance to that of the linear system, which is composed
of three resonantly coupled oscillators. Resonant multidimensional oscillatory systems are,
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as we have mentioned, highly non-generic. It is worth noting that in the nonlinear limit,
P(S) becomes a series of equally spaced delta functions whose strengths diminish with
increasingS. This distribution is again highly atypical among level-spacing distributions for
integrable systems, and consequently one cannot make use of the Berry–Robnik conjecture
to illuminate the manner in which the system returns to integrability asγ /β → ∞.

Appendix

Here, we show that there are no degeneracies associated with the parity symmetry of the
Hamiltonian given by (2.1). The parity symmetry we are considering here has the unusual
property of not having a related unitary parity-shift operator, since any operator which alters
the parity of an arbitrary eigenstate ofP̂ must necessarily annihilate symmetric product states
of the form |n,m, n〉. It is, however, possible to construct parity-shift operators which are
unitary on the remainder of the Hilbert space, although we must, in general, choose a
different one for each fixed-parity basis. In this case, the natural basis is formed by the
eigenstates of̂H . As we shall see, this does not prevent us from unravelling the prerequisites
for parity-degeneracy in an effectively basis-invariant manner. To this end, it will be useful
to express theN -boson subspace as the direct productHN = H1N × H2N × H3N , where
the HiN are defined by

H1N = sp{|j,N − (j + k), k〉 j < k} (A.1)

H2N = sp{|j,N − 2j, j〉} (A.2)

H3N = sp{|j,N − (j + k), k〉 j > k} . (A.3)

Each eigenstate|ψNm〉 may be expressed as the sum of its projections onto these
subspaces in the following way:

|ψNm〉 =
∑
i

P̂iN |ψNm〉 =
∑
i

|ψi
Nm〉 (A.4)

where we have introduced̂PiN , the projector onto the subspaceHiN . Each state|ψNm〉 has
definite parity, which implies the relation

〈j,N − (j + k), k|ψ1
Nm〉 = ±〈k,N − (j + k), j |ψ3

Nm〉 (A.5)

with j < k. The time-independent Schrödinger equation may then be written as

Ĥ
∑
i

|ψi
Nm〉 = ENm

∑
i

|ψi
Nm〉 . (A.6)

Were the parity-shift operation on|ψNm〉 to produce another eigenstate ofĤ with the
same eigenvalue, we would then have

Ĥ (|ψ1
Nm〉 − |ψ3

Nm〉) = ENm(|ψ1
Nm〉 − |ψ3

Nm〉) . (A.7)

Substitution of (A.7) into (A.6) readily gives the result

Ĥ |ψi
Nm〉 = ENm|ψi

Nm〉 . (A.8)

We may then choose the eigenstates ofĤ to be localized in the subspacesHiN . One
important consequence of the decomposition given in (A.4) is that the states|ψi

Nm〉, although
unnormalized, are for eachi orthogonal and complete onHiN . We may then expand any
state|φiN 〉 in HiN as a linear combination of the|ψi

Nm〉. As a consequence of (A.8), this
state will be transformed by the Hamiltonian̂H into another state inHiN . It follows that the
matrix element ofĤ between states lying in different subspacesHiN will be zero, which
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is not the case for the Hamiltonian given by (2.1), simply because this matrix element does
vanish for the nonlinear part of the Hamiltonian but not for the linear interaction term, and
thus not for their sum. In short, it is not possible to diagonalize the Hamiltonian separately
on the subspacesHiN , while in contrast a further reduction to an irreducible representation
of the permutation groupS3 is possible for the periodicDNLSE lattice [14]. We can then
see that the parity symmetry of the non-periodic lattice does not cause degeneracies.
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